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ML FOR SCIENTIFIC INFERENCE

ML methods always give:

Automation: Mechanized process reduces labor and time needed
Cope with increasing data volume (instruments, simulations)
Important for data centers: operations often underfunded

Repeatability: Well-defined algorithm produces results
Uniformity over time key for long-term studies
Allows uniformity among distributed investigators
Crucial for highly charged subjects like climate change

Sometimes one obtains these as well:

Objectivity: Problem-sensitive decision among many conclusions
E.g., model order, number of clusters, which features to use
Often only possible in a limited context or domain

Consensus: Ubiquitous algorithms factor out disagreements
Go beyond ad hoc gadgets to general, cross-domain solutions
Exchange models and algorithms as well as data

Composability: Can analyze machine-generated interpretations
Building a data pipeline, meta-analysis, federated databases

Performance gains are important:

Quality: Quantitative, optimal inference gives better results
Many schemes (implicitly) optimize over interpretations
Gauss obtained the orbit of Ceres by least squares in 1801

Comprehensiveness: Ability to examine more information
Integrate more data within a given interpretation
Achieve total spatial/temporal coverage
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GROUND TRUTH — MODEL VALIDITY

Questions brought to fore by scientific problems
Physical questions that seem decidable in principle...
...but whose very intractability motivates inference techniques!

Models for observables

Observables are directly sensed, allowing direct model checks
Can falsify (Popper 1958), but never fully verify

Computing P (data | model) falsifies some models or model classes
E.g., image modeled as three classes, each of which is normal,
is falsified if pooled pixels are not a normal three-mixture

Information on hidden variables

This ‘ground truth’ is difficult to come by
• Scientists typically cannot identify objects reliably

Problems become very evident at single-pixel scale
The most informative test cases are also most uncertain

• Further: Lack of physical understanding of problem means
even experts may be surprised at what is really there.

Conceptual inadequacies in models

Methods are often not suitably invariant to resolution
Classes in image segmentation are often not mutually exclusive
Spatial independence is often assumed at some point
Need spatial/temporal stationarity which rarely exists
Bayesian ‘dogma of precision’: every state can be assigned a
probability; every outcome can be assigned a cost (Walley 1991)
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SPATIAL MODELS

General References

B. D. Ripley, Statistical Inference for Spatial Processes,
Cambridge, 1988.
Discrete and continuous random fields; morphological operations

N. A. C. Cressie, Statistics for Spatial Data, Wiley, 1993.
Especially strong on geostatistics and models for point-sets

Pattern Theory

U. Grenander and Y. Chow and D. Keenan, Hands: A
Pattern-Theoretic Study of Biological Shapes, Springer, 1991.
A compelling example of synthesis of a complex shape

U. Grenander and M. I. Miller, “Representations of knowledge in
complex systems,” Jour. Roy. Stat. Soc. Ser. B, 56(4),
549–603, 1994.
Linking abstract models to pixel-level features

Shapes

A. Blake and M. Isard, Active Contours, Springer, 1999.
Engineering perspective on parameterizing and tracking
boundaries

K. V. Mardia and I. L. Dryden, Statistical Shape Analysis,
Wiley, 1998.
Comprehensive survey of representations and distributions for
shapes
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OBJECT LOCATION

Known object

Example: volcanoes on Venus in SAR imagery from Magellan

Known object family

Example: craters (scale variation; also overlap)

Unknown objects

Potential to detect local variations in a background
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LEARNING SCHEME

Due to Michael Burl (JPL) and collaborators
(P. Smyth, U. Fayyad, P. Perona)

To ease computation, all images reduced in resolution 2 × 2

Two-phase system
Focus of attention (FOA): Identify all likely candidates
Classification: Assign candidates to classes

FOA sweeps whole image, identifying possible volcano sites which
are extracted as square ‘chips’

Classification treats chips as i.i.d. inputs and classes as volcano or
non-volcano

Training is done with scientist-supplied training chips.

Sample Volcanoes

Category 1:

Category 2:

Category 3:

Category 4:
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FOCUS OF ATTENTION

Motivation:
Reduce computation by giving up early on unlikely sites
Allows use of traditional iid classifiers in phase two

Uses scientist-identified volcano sites to find matched filter F

Average of positive examples
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F is swept over image to identify strong matches
Less computation by using F ≈ ∑
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Threshold the correlation to identify potential volcano sites

Sites within four pixels are aggregated in the final list

Use family of filters: only limited improvement
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CLASSIFICATION

This step is in the realm of classical iid-input algorithms

Non-volcano class is by nature not localized; volcano class is
relatively local

Feature selection using PCA compresses 152-dimensional data

Quadratic discriminant analysis forms baseline decision rule
Class-conditional normals with certain mean and covariance
(µv, Σv) fitted from volcano training data
(µnv, Σnv) fitted from non-volcano training data
Classify by thresholding P (x; µv, Σv)/P (x; µnv, Σnv)

K-Nearest Neighbors a similar-performing alternative
Use all volcano and non-volcano training chips
Majority class among the K neighbors of an input chip wins
Neighbors via weighted Euclidean distance (x − y)TR(x − y)
R chosen to emphasize pixels close to chip center

Resulting accuracy is about as good as human experts in
homogeneous data; degrades markedly in heterogeneous regions

Key seems to be to have good information on local non-volcanoes
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DIVIDE AND CONQUER

Schema

Method fits relatively well into Dietterich framework
Window, decide, merge

FOA algorithm is where all spatial processing happens
Cleverly, does not choose a fixed window position
Input scale is the 15 × 15 pixel window
Combination rule: FOA-sites within four pels are aggregated
Output scale is just the granularity of a single volcano

Classification then proceeds independently at each site

Include final V/NV decision into framework as well?
Indicates alternate algorithm where multiple FOA sites are passed
through to final classification; then these classes are merged

Fundamental reason this was easy: the discrete, nonoverlapping
character of volcanos simplifies the merge

Agenda

Burl et al. 1998: multiple components “make overall system
optimization difficult if not impossible given finite training sets”

Optimization seems to enter somewhere, like it or not
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IMAGE LABELING

Solar imagery

Reliably identify structures in the photosphere
Sunspots: Depressed intensity and high magnetic flux
Faculae: Regions of enhanced intensity and moderate flux
Quiet sun: everything else

Relate these structures to irradiance changes (weather/climate)
Also: space weather (identify large δ-spots which cause flares)

Mars Geology

Identify soil structure (dust, sand, pebbles)
Detect rocks on soil background
Classify rock types (sedimentary/igneous, weathering, impact)

Methods

Automatic, objective classification using statistical model

Model quantifies the uncertain relation of observables to classes

Model uses spatial information to choose labels

Falsifiable models (Popper 1958) can be checked against
the data they claim to model

General method that extends unchanged to other settings, e.g.
more observables
different number of features
explicit accounting for miscalibration; outliers
inclusion of physical knowledge (like sensor noise)
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EXAMPLE SOLAR DATA

Irregularly-sampled time series of (full-disk) images
Analyzed May 1996 – Sep 2000; 60 GB across 25 000 images
Below: SoHO/MDI, 17:58 UTC on 7 September 1997

Preprocessed Magnetogram: Detail

Preprocessed Photogram: Detail
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PROBABILISTIC IMAGE MODELS

Quantitatively describe the uncertain relation between
observables and labels in a general probabilistic framework

Labels x Data y

P (x) P (y |x)

-

�

Synthesis

Analysis

�Observer

At each spatial position, one of K physical processes is dominant.

Observables arise depending on the dominant physical process.

Generation of observables may be viewed as adding uncertainty
(noise) to the underlying dominant process.

Goal of analysis is to invert this noisy mapping.

Variables of the Model

Index set N of spatial coordinates s = (i, j)

Unobservable labels x = [xs]s∈N & observables y = [~ys]s∈N
xs: small integer 1 . . . K (e.g., ACR/Fac/QS)
~ys: real vector (e.g., the pair (magnetic field, light intensity))

Statistical model given by two distributions P (x) and P (y |x)
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MODEL SPECIFICS: I

Describe the two distributions P (x) and P (y |x)

Linking to Observables with P (y |x)

Make the link via scientist-labeled images and distribution-fitting

Alternatively, can infer automatically from data via clustering

Obtain K distributions, one for each feature class

As strawman, put forward per-class normal distributions

P (~ys | xs = k) ∼ Normal(~µk, Σk)

with d × 1 class means and d × d covariance matrices.

(QS class, k = 1: fits the SoHO/MDI data reasonably well using
~µ1 = [ 0 1 ] and Σ1 = (0.01)2I .)

For MDI, the normal distribution is inadequate for all classes:
strongly multimodal
cannot even transform to normality (e.g., with |flux|)
quiet class,e.g., contains superpositions of effects
(supergranulation is discernable in scatter plots)
=⇒ it fails standard statistical tests.
...normal model is thus falsified.

We must introduce more realistic data models P (~y | x)
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MODEL SPECIFICS: II

Quantifying Spatial Smoothness with P (x)

Typically β ≥ 0 controls smoothness in the prior

P (x) =
1
Z

exp
(
−β

∑
s∼s′

1(xs 6= xs′)
)

where s ∼ s′ means: site s close to site s′, e.g. one pixel away

Penalty of β per disagreement of nearby pixels to enforce spatial
coherence of labelings

Key property of locality: P (xs = x | x(s)) = P (xs = x | xN (s))

At β = 0, penalty and spatial constraint vanish

Sample realizations from P (x)

Sample from Uniform Prior Sample from MRF Prior Sample from Asymetric MRF Prior
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ASIDE: CONTINUITY AND EDGES

Such Markov random field models allow edges in modeled images
Change in discrete hidden variable forces
significant change in real-valued observable

Jumps undesirable in typical image restoration contexts

Motivates conditional autoregressive (CAR) model

P (xs = x | x(s)) = P (xs = x | xN (s)) = N(AxN (s), Σ)

but with conditionally normal distribution

(Autoregression: predict xs in terms of “itself” xN (s))

Joint distribution of CAR model is normal, easing computation

Natural parallel with familiar one-dimensional models

Continuous Discrete
Time Series Autoregressive (AR) Hidden Markov models (HMM)

or Kalman models
Imagery CAR models Markov random fields (MRF)

MRF computations are the hardest: our best tools do not apply
Non-gaussian, so no reduction to clever matrix manipulations
Bayes net of many short cycles, junction tree algs liable to fail

But: sampling, Metropolis-Hastings, and MCMC methods
developed for MRFs enable very complex models
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SIMULATING MRFS

Distribution P (x) = Z−1 exp
(
−β

∑
s∼s′ 1(xs 6= xs′)

)
No direct simulation: no Z, and state space of x huge!

Randomized algorithm: Gibbs sampler

Basis: craft a MC having P as its stationary distribution
Adaptation of stat-mech methods (c.f. Metropolis et al. 1953)
for simulating the state of interacting systems

Iterative algorithm: starts at some labeling and
refines it pixel-by-pixel over many image sweeps

Method:
Choose an initial x̂
Scan pels in raster fashion.

At pel s, find P (x̂s = x | x̂(s)), 1 ≤ x ≤ K. [*]
Choose new x̂s by drawing from this distribution

Repeat scanning

Result: As scans go to infinity, x̂⇒P (·).
That is, iterate enough and the labeling is a draw from P (x)

Remarks

Note local combination rule [*]

Flip of one label can eventually influence all labels

This method, and similar Metropolis-Hastings methods, are the
basis for updating more complex spatial models
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INFERRING THE LABELING

Invert the noisy data via maximum a posteriori (MAP) rule

x̂ = arg max
x

P (x|y)

Bayes formula shows P (x|y) ∝ P (y|x)P (x)

For normal P (ys | xs), algebra reveals the objective function

log P (x|y) = − 1
2σ2

∑
s∈N

∥∥~ys − ~µxs

∥∥2 − β
∑
s∼s′

1(xs 6= xs′)

Interpretation
First term: fidelity to data (observation close to its mean)
Second term: image smoothness (this couples the pixel labels)

Maximizing P (x |y)

• Use Gibbs sampler to draw from the distribution P (x |y)

• To maximize P (x |y), nest G.S. within simulated annealing
That is, pick large λ and draw via G.S. from

Pλ(x |y) := (1/Zλ) P (x |y)λ

(Effectively scale entire log-posterior, above, by λ)

• Simulated annealing: raise λ as Gibbs sampler iterates
If λ up slowly enough, mode is reached

λ λ

• Takes about 3 min/image on Sun workstation (360MHz).

' $

& %

C-8(17)



MODELING THE OBSERVABLES

For realistic models, benefit from the flexible mixture density

p(~y; θ) =
G∑

g=1

αgN(~y; ~µg, Σg)

θ = {(α1, ~µ1, Σ1) · · · (αG, ~µG, ΣG)}
Accounts for multimodality and superpositions of effects
A very general family: take G large.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

Magnetic Flux

I
n
t
e
n
s
i
t
y

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0.9

0.95

1

1.05

1.1

Magnetic Flux

I
n
t
e
n
s
i
t
y

Ask scientists to find regions of type xs = k; estimate θk for each

Goal: From data Y = [~y 1 · · · ~y n], find a density model p(~y; θ̂)
Method: Determine parameters by maximum-likelihood using Y :

θ̂ = arg max
θ

log P (Y ; θ) = arg max
θ

n∑
i=1

log p(~y i; θ)

Performed via EM algorithm: done once and the model is fixed

Unsupervised mode: Provide cumulative data over classes, and
EM clusters ~y into classes: clusters are extracted after the fact.

Order selection by cross-validated likelihood (Smyth 1999)
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MODELS USED: SOHO/MDI
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MODELS USED: MT. WILSON
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LABELINGS

Labeling: 1998/01/15 11:11 UTC + 0,1,2,3,4,5 days
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HIERARCHICAL SPATIAL MODELS

Better Representations

Represent an object via a compactly-described membership
function hs indicating subjective belief site s is active region

— Larger-scale representation of an object
— Provides interpretability

Several Simple Mechanisms

Outlines: Grenander et al., 1991
Polygons: Green 1996
Continuum triangulations: Nicholls 1997, 1998
Delaunay triangulations: Turmon 1998

Binds nearby on-object regions into one object

Two fundamental quantities:

Indicator function hs, s ∈ N
h(s) = 1 means on-object, h(s) = 0 if not
Parameterized by tie points in N .

Function complexity κ(h) ≥ 0
e.g., the number of tie points, or
intensity of point process generating tie points
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LINK TO OBSERVATIONS

Establish Markov dependence between hierarchical model layers

P (h,x,y) = P (h)P (x | h)P (y |x)

Raw
Intensities

Pixel
Labels

Membership
Function

TriangulationMRF Scheme

Interpretability/Abstraction

Probabilistic Model
Penalize complexity by setting

P (h) = Z−1 exp
[−γ κ(h)

]
This choice gives an additive penalty to disjoint objects

Intermediate layer uses hs to bias the event {xs = Object}:

− log P (x | h) = β
∑
s∼s′

1(xs 6= xs′) + α
∑
s∈N

|1(xs = Object) − h(s)|

The data distribution P (y |x) is as before.

• One can do inference by maximizing the posterior

P (h,x |y) = P (h,x,y)/P (y) ∝ P (h,x,y)

or minimizing its negative logarithm

γ κ(h) + α
∑
s∈N

|1(xs = Object) − h(s)|

+ β
∑
s∼s′

1(xs 6= xs′) +
1

2σ2

∑
s∈N

(ys − µxs)
2
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INFERRING COMPLEX MODELS

We describe inferring shape models for fixed labeling

To speed convergence, replace 1(xs = Object) above
with its probability given the data
(Fully analogous to ICE algorithm of Art Owen)

Now the objective simplifies to

γ κ(h) + α
∑
s∈N

∣∣∣P (xs = Object |y) − h(s)
∣∣∣

Metropolis-Hastings sampler

Inference means choosing tie-point positions

Construct a Markov chain on the state space of tie points

V =
⋃
k

Vk =
⋃
k

(N × N )k

that has limit distribution

π(h) = P (h |x,y)

(Maximize P (h |x,y) with same annealing setup as earlier)

Metropolis-Hastings proposes state changes and probabilistically
accepts them to achieve the desired limit distribution

The operator set consists of
tie-point move (M),
tie-point raise/lower (R),
tie-point add (Ak) or kill (A′

k)
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SPATIO-TEMPORAL INFERENCE

Object trajectories
Sea-level pressure over the Pacific (δt = 48 hrs.)
Cyclone center shown by white cross
Right: trajectories from a series of (quantized) observations
Data from P. Smyth, UC Irvine

Other examples: sunspot motion, microblock motion from GPS

Objects through time

Images

Labels

Objects

x1

y1

h1

x2

y2

h2

xT

yT

hT
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MODELING THE TEMPORAL PART

State-based motion models
Include influence of exogenous inputs and observable covariates
Discover motion clusters by uncovering a hidden class C

Examples
Generalizations of the Kalman filter as Bayes nets with state ut

����
u1 ����

u2 ����
u3 q q q ����

uT- - -

����
C���������

�
�

��	 ?

Z
Z

Z
ZZ~

q q q

����
z1 ����

z2 ����
z3 q q q ����

zT

? ? ?

q q q
? ����

z1 ����
z2 ����

z3 q q q ����
zT

����
u1 ����

u2 ����
u3 q q q ����

uT- - -

����
r1 ����

r2 ����
r3 q q q ����

rT

? ? ?
q q q

?

? ? ?
q q q

?

mixed dynamical model model with exogenous inputs rt

Build temporal models atop de-coupled spatial models

Implications

Two domains of divide and conquer
Easy cases: dominant locality in space (sunspots) or time (GPS)

...allows decoupled solutions
Coping with both simultaneously is harder, even beyond
current limits of practical optimization technology

Problems...
estimate model parameters automatically
learn the model structure automatically

' $

& %

E-2(26)



SPATIO-TEMPORAL MODELING (I)

Base concept of random vector is inadequate
Capture concept of variables on structured index sets

Domain : An index set

• Principal Examples:
Any finite set
Zn, the first n integers (e.g., time series)
Z/Zn, the cyclic version of Zn

R, the real numbers

Domains supporting translation play a special role

• Operators on domains give means of combination
∪, the union
×, the cross-product
Allows formation of domains for images, etc.

• Stencil is a Domain identifying a local neighborhood
{−k, ..., −2, −1}, for a k-order autoregressive model
{(−1, 0), (1, 0), (0, −1), (0, 1)}, for a first-order MRF

−k r r r −2 −1 u (−1,0)

(0,−1)

(0, 1)

(1, 0)u
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SPATIO-TEMPORAL MODELING (II)

Field : Mapping on a Domain

Random Field a mapping from a Domain to earlier Variables
...the spatiotemporal generalization of random variable

Principal examples:
Time series are random fields over Z or R

Multispectral images: random fields over ×({1, . . . k}, Zn, Zn)
(spectral index does not support translation)

Neighborhood a Field from (Domain, Stencil) to a Domain
...maps (site, offset) 7→ site′, often by translation
...supports adjacency for dependence structures

Let M be the neighborhood corresponding to the order-1 MRF
Then M(i, k) is the k-th neighbor of site i

M(i) is the set of all neighbors of site i

unpack operator
...returns the neighborhood M given a Domain and Stencil
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MODEL SPECIFICATION

• Simplest models have no conditional dependence:

D = Zn

(∀i ∈ D) x[i] ∼ Normal(i, 4)

• AR model:

D = Zn

S = −1
M = unpack(D, S)
(∀i ∈ D) x[i] ∼ Normal(x[M(i; −1)], 1)

• The standard Potts MRF prior:

D = ×(Zn, Zn)
S = {(−1, 0), (1, 0), (0, −1), (0, 1)}
M = unpack(D, S)

(∀i ∈ D) ct[i] =
∑

k∈M(i)

x[M(i; k)]

(∀i ∈ D) x[i] ∼ Discrete(0,
ect[i]−4

ect[i]−4 + e−ct[i] , 1,
e−ct[i]

ect[i]−4 + e−ct[i])

Import just enough mathematical notation to express the models
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CONCLUSIONS

Machine procedures offer many benefits to scientific inference

Persistent issues:
Building tractable models of observational reality
Obtaining accurate training data
Designing and executing clear falsification experiments

Finding Objects

Discussed a good algorithm-based approach
Divide and conquer schema applicable (even suggestive) here

Labeling Images

Use of statistical models allows falsification experiments,
easy extension to wider class of problems

Spatially, temporally uniform data is key to accurate labelings

Complex models

Useable temporal and spatial statistical models do exist
...but the best ML perspectives often absent from this work

agnostic models, robust algorithms, cross-validation,
automation
Cooperating space/time models, linked spatiotemporal models

Futures

Object-level recognition in non-algorithmic framework
Languages to express statistical models on structured domains
Model selection in complex, flexible model space
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